DEPARTMENT OF STATISTICS
Seguoia Halt
Stanford University
Stanford, C4 9430540865

Fast MARS

Jerome H. Friedman

Technical Report No. 110
May 1993

Laboratory for

Computational
Statistics

Department of Statistics
Stanford University

FAST MARS

JEROME H. FRIEDMAN
Department of Statistics
and
Stanford Linear Accelerator Center

Stanford University
Abstract

Multivariate adaptive regression splines (MARS, Friedman (1991)) is a methodology for ap-
proximating functions of many input variables given the value of the function — perhaps contam-
inated with noise — at a collection of points in the input space. Although training times for this
method tend to be much faster than feed-forward neural networks using back-propagation, it can
still be fairly slow for large problems that require complex approximations (many units). This

paper describes modifications to the original MARS algorithm that can dramatically increase its

speed in these situations.

1.0. Introduction. Multivariate adaptive regression splines (MARS, Friedman (1991a,
1991b, 1991c)) have emerged as a viable competitor to other popular methods for supervised learn-
ing. The supervised learning problem is easily stated. One has a set of variables & = {z,---,2,}
that are regarded as being simultaneous inputs to a system, and another set y = {y;,---,y,} that

are regarded as being the outputs. A relation of the form

i = filzr,nzp) 6, i=1g)

is presumed to exist between the inputs and outputs, where {f;}] are single valued deterministic
(target) functions of p variables, and {¢;}] are randomly varying quantities reflecting the fact
that a simultaneous set of input values may not uniquely specify values for the outputs. The
system under study may be responding to additional (hidden} inputs that are neither measured
nor controlled. By convention the expected (average) values of each random component €; are
taken to be zero, E(¢;) = 0. The goal of supervised learning is to obtain a useful approximation fj

to each (deterministic) function f; in (1), using a set of examples (training data)
{yns e > Yigi Bins - Biphiss (2)

obtained by observing the system under study. Among the distinguishing characteristics of the
MARS approach are generally fast training times, the ability to handle multivalued nonnumerical
(categorical) input variables, and missing input values, in a natural way (Friedman (1991b)), and
to produce approximating functions that have interpretative value. That is, they vield insight into

the nature of the (multivariable) dependence of the outputs on the inputs (Friedman (1991a)).

2.0. MARS Algorithm. Mars produces approximations that take the form of an expansion

on a set of basis functions {By,(zy,---.z,}47

M

f@iazp) =Y amBum(zr, , 2p). (3)

m=0

For a given set of basis functions, the coefficients are determined by a least squares fit of (3) to the

training data

2

N M
{am]‘ﬁw = "':-"{rgmﬂl Z Yn — Z amﬂm{xnls na '?Eﬂ.p] . {4}
¥mIy m=1 m=0
In the MARS approach the basis functions are also adapted to the training data. They take the
form
Km
Bum(21,+ s 2p} = | | Bssn(Zuiimy | Piwm) (5)
2 k=1

2

which is a product of K, (elementary) functions bem(-), each of a single input variable z,x).
and characterized by a set of parameters Prn,. If the input variable z,; »; takes on orderable

numerical (real) values then
bem(z | 8,1) = [s(z = 1)]4 (6)

where the subscript indicates the positive part of the argument

] z, ifz>0
“* 710, otherwise -

The parameters associated with (6) are the “knot™ location —eo < t < oo and the truncation sense
s = 1. That is, Pim = (Skm,tkm) in the corresponding factor (5). If z,(k,m) takes on a set of
categorical values

:Eu{krm] £ {CI?_"!CK}! {TJ

where there is no order or distance relation among the values, then
bim(z | A) = H(z € A), (8)

where A is a subset of the assumable values for z, A € {¢1,---.¢cx}, and H(n) is a 0/1 valued
function indicating the truth of its (logical) argument

_ |1 ifnis true,
Hy)= {U otherwise. (9)

In this case Pim = Agm, an enumerated subset of values for 2,04 m) (5)-

The goal of the MARS algorithm (Friedman, 1991a,b) is to produce a good set of basis func-
tions {Bm}3' (3) (5) (6) (8), for approximating each output (target) function f; (1), with feasible
computation. This is accomplished through a forward /backward iterative approach. The forward
part attempts to synthesize a (super) set of such basis functions. That is, a larger than optimal
number is generated in a deliberate attempt to overfit the training sample (2). The backward
iterative procedure then selectively deletes basis functions with the goal of producing the most
generalizable approximation, where all basis functions are eligible for deletion. Motivation for this
(forward /backward) approach is given in Friedman {1991a).

Basis function synthesis in the forward stepwise part of the algorithm proceeds as follows. The

initial basis function set (at iteration / = 0) consists of the single (constant) function
By(z) = 1. (10)
Each successive iteration (/ > 1) synthesizes two new basis functions of the form

Bri—1(x) = Be(x)b(z, | P) (1la)

3

Byr(z) = Be(z)b(z, | P), (115}

where B;(z) is one of the basis functions produced at an earlier iteration (0 < £ < 2] - 2), z, is
one of the input variables (1 < v < p), and b(- | P) takes the form of either (6) or (8), depending
on the nature of z, (real or categorical). The parameters P associated with (11b) are related to
P, those associated with (11a). If z, is real valued (6) then

P=(s1) and P =(-s,t) (12a)

whereas, if z,, is categorical (8)
P=Aand P=A, (12b)

where A is the complement subset of values (of z,,) to those of A; that is,
H(z, € A)=1- H(z, € A). (13)
The two new basis functions (11) produced at each iteration are characterized by the parameters
{¢,v, P}, (14)

that is the particular previous (“parent™) basis function By(z), the particular input variable z, that
serves as the argument to the single variable function (- | P), and the corresponding parameters
F of that function. Values for these parameters are chosen to give the best (least-squares) fit of

the resulting approximation to the training data,

N 2r-2
(€%, v", P*) = argmin Z I:yn - Z a; Bi(x,)
i = (15)
2

= EEI—IBE(zn}b(xvn | P] = a'EIBfl:mﬂ]b[Iun | P} .

These optimal parameter values (£*,v*, P") are then used with (11) to create the two new basis
functions at the Ith iteration. These are then included with the set of previously synthesized basis
functions to serve as potential “parents” in future iterations. These iterations are continued until
a (user specified) maximum number of basis functions, Mn.. are synthesized. [Heuristic rules for
choosing Mpax are given in Friedman (1991a).] The backward stepwise procedure is then applied
to this final basis function set to selectively delete individual basis functions whose inclusion are
judged (by a model selection criterion) to reduce generalizability. [See Friedman (1991a) for details.]

The (forward) algorithm develops basis functions of the form given by (5) in a hierarchical
manner. New basis functions are created by multiplying one of the existing ones (“parent” ba-

sis function) by a (simple) function of a single variable. The final basis functions are thus each

4

(tensor) products of factors, where each factor is a function of a single variable. The resulting
approximation is obtained by a least-squares fit of the output on those basis functions that survive
the backward elimination. Underlying motivations for this approach on approximational and sta-

tistical grounds, along with performance results on many real and simulated examples, are given

in Friedman (1991a,b).

2.1. Computation. The forward stepwise part of the MARS procedure presents (by far) the
greatest computational burden. At each step (iteration, I) the solution to (15) must be obtained.
For a given set of parameters (14), the solution of (15) for the coefficients {a;}3! can be obtained

by standard least squares fitting methods with the dominant computation proportional to
Cysp ~ NM? (16)

where M = 21 + 1, the total number of coefficients (basis functions). The other parameters (14)
enter nonquadratically in (15) so that numerical optimization methods must be used. The procedure

employed is exhaustive search. That is, all possible (joint) parameter values are considered:

0<E<M=-2
(17)
l<v<p,
and for the factor parameters P,
s=41, t€ {zem}, (18)
for z,, real (6), and
A C {ex}¥ (all subsets) (19)

for z, categorical (7) (8) (9). This strategy requires on the order of pN M solutions to (15) for
the coefficients {a;}5"~" (linear least-squares fits) each of which takes time proportional to (16).
The computation associated with each iteration is therefore proportional to pN2M?>. If there are
Imax iterations, resulting in Mpay = 20 max + 1 total basis functions, then the total time to run the

forward stepwise part of the MARS procedure is proportional to

Cmu — PJﬂ'lrzM‘

max*

(20)

This computational requirement (20) grows rapidly with the training sample size N and super-
rapidly with the complexity of the target function(s) (1) as characterized by the number of basis
functions Mpyax required for an adequate approximation. For all but the smallest problems train-
ing times would be large, perhaps comparable to that required for feed forward networks trained

through back propagation.

Friedman (1991a.b) takes advantage of special characteristics of this particular optimization
problem to reduce computation. The time required for the individual linear least-squares fits (16)
is (dramatically) reduced to

Cisp~ M (21)

by considering the set of eligible (factor) parameter (18) (19) values in a special order. Least-
squares updating formulae can then be used to obtain the solution (15) (for the coefficients) for
a particular set of parameter values (18) (19) in time proportional to M, given the solution for
the previously considered parameter values. This strategy reduces the total computation for the
MARS algorithm (from (20)) to be proportional to

Cr;ax = P‘M Mr%tar (22}

This results in relatively fast training times for moderately sized problems (pN < 20,000,
Mmax < 50), usuallly seconds to (a few) minutes on a typical engineering workstation (DECStation
5000/240).

Although the computational tricks leading to (21) (22) greatly expanded the size and scope of
problems to which the MARS approach can be applied, there are still limitations for comfortable
training times. The main problem lies with the cubic dependence on the number of basis functions
(22). For very large problems (pN big) requiring complex approximations (Mmax large) MARS
training times can be prohibitive. This note describes a strategy for dramatically (further) reducing
training times for MARS on these large complex problems. The central idea is to alter the strategy
for optimizing with respect to £ and v (17) from an exhaustive search over all possible values at
each iteration, to a much smaller set of values likely to contain the solution, as determined from
information retained from previous iterations. The main result is to reduce the overall computation

to be proportional to Mz, (rather than M3 _)} in (22).

3.0. Parent Priority Queue. A central ingredient in the MARS algorithm is to choose
one of the existing basis functions By(2) (0 < £ < 2 — 2) as the “parent” for producing two new
“daughter” basis functions, Byy_1(x) and By(z) (11), at the I'th iteration. The one chosen to be

the parent is the one that minimizes the lack-of-fit criterion

2
Ly(£) = min Z Yn — a;Bi(xn) — asp1 Be(@n)b(zyn | P) — o Be(2o)b(zym | P}} y (23)

2 n=I i=0

or equivalently, maximizes the improvement-of-fit criterion
2

N 2I=2
Ji(f) = ; miil}—n |: n = Z a;Bi(z,)| — Li(£). (24)
g p=1 i=0

At each iteration, I, J;(£) is computed forall 0 < £ < 27 — 2 and

£ = argmax Jy(£). (25)
0<E<2I-2

The corresponding (optimizing) parameters v* and P* are then used (with £*) to define the two
new daughter basis functions through (11).

Except during the early iterations (J small), the approximation (3) does not change dramat-
ically by the addition of two additional basis functions, at the next iteration. Therefore, there is
likely to be a strong correlation between Jy(£) and Jy41(£) (0 < £ < 2] — 2), except perhaps for the
one Jy(£*) (25) selected as the parent. More specifically, consider {J !(n}ghz sorted in ascending

order and let Rj(f) be the rank of J;(£) in this sorted list,
Ri(£) = rank{J/ (k) i 5°. (26)
Jr(E)

The basis function at the top of this list (R;(£") = 27 — 2) is chosen to be the parent at the Ith
iteration. At the I + 1st iteration all of the {J;4+1(£)}3" are recalculated and (re)ranked yielding
{R41(€)}3'. For I not small (later iterations), the rankings are not likely to be very different,
Riy1(€) = R(€), for 0 < £ < 2] — 2, In particular, those basis functions with low rank R;(£) at
the I'th iteration are most likely to also have low rank R;4q(£) at the I + st iteration, and thus be
very unlikely to be at the top of the list (R;41(£) = 2I) to be chosen as the I + 1st parent. This
suggests that the search for the [+ 1st parent can be restricted to those basis functions with high
rank Ry(f) = 2I — 2 — K in the previous situation. Here K << 2] — 2 is a specified cutoff value for
limiting the search.

Consider a priority queue in which potential parent basis functions are ranked (26) by (24) at
the Ith iteration. The length of this queue is 2] — 2. The basis function B (x) the top of this
queue (R(£*) = 2 —2) is taken to be the parent for creating the two new (daughter) basis functions
Ba;_y(=x) and Bay(zx) (11). These two new basis functions are placed at the top of this priority
queune (J;(2]/=1) = J;(2I) = o), which now has length 2/. The remaining basis functions thereby
have their ranks reduced by two,

{R/(€) — Ry(£) - 2}21-?

retaining their relative ordering in this (larger) queue. At the I 4 1st iteration the improvement-
of-fit (23) (24) is (re)calculated only for the top K members (basis functions) in this queue (i.e.
Ri(£) =2 2] - K). The improvements associated with the remaining basis functions, R;(£) < 2] - K,
are taken to be the same values as used at the previous (Ith) iteration. The entire queue is then

reordered based on this set of improvement values and the resulting highest ranking basis function

7

is selected as the parent for the J 4+ 1st iteration. The two new (I + 1st) daughters are then placed
at the top of this (now larger) queue for the next (I 4+ 2nd) iteration.

During the early iterations (I < K + 2) all (previously created) basis functions are among the
top K in the queue and the algorithm proceeds as before (Friedman, 1991a,b). In later iterations
(I > K + 2) parents with low (approximate) improvement potential (R;(£) < 2] — 2 - K), as
reflected by (low) improvement-of-fit values (23) (24) calculated at earlier iterations, do not have
their improvements recalculated. Computation is thereby reduced by a factor of K /(2] —2) at the
I'th iteration. If the best potential parent (among all 21 — 2) lies among the top K members in the
queue (as is likely) then there is no performance (accuracy) loss. Even if it does not, it is likely
that a good competing parent (that would have been chosen at a later iteration) is among the top
members and will be chosen. Its choice will tend to deflate its value for future iterations, thereby
allowing the missed (best) parent to enter the top of the queue and be selected in a later iteration.

3.1. Aging. The priority queue strategy described in the previous section has a natural
“aging” property. Namely, potential parents that are sent near the bottom of the queue at some
iteration will tend to work their way back to the higher levels (over time) and be reevaluated. As
iterations proceed the approximation (to the training data) becomes better. Thus, recomputed
improvements (24) will tend to decreases since less improvement is possible. Improvements that
have not been recomputed for a long time will tend to be larger (than if they were recomputed
at the present iteration) reflecting the larger potential improvement possible then. This will cause
them to work their way up in the priority queue. When they reach the top K in the queue they
will be reevaluated. If they are still not good (low improvement measure) they will then revert to
near the bottom of the queue and start working their way up again. Those parents near the top of
the queue will have their improvements (24) reevaluated often (as long as they stay near the top)
until they achieve a low improvement value.

It may be desirable to enhance the aging effect to make sure that some potential parents don'’t
get lost forever. That is, they get assigned so low an improvement value at some stage, that they
can never work their way back up in the quene. This can be accomplished by setting the priority

for each basis function as

Pr(£) = R,(€) + AU - I) (27)

where Rj(£) (26) is the ranking based on improvement scores, I is the current iteration number,
and Iy is the iteration at which J,(¢) was last recomputed. The coefficient § is the (artificial)
“aging” factor. The top A parents as sorted on this priority (27) (rather than improvement) are
then evaluated at the Ith iteration.

Larger values of 3 (27) result in low improvement parents rising faster in the (new) priority

8

queue (27), providing insurance against a (possibly good) parent getting lost. A disadvantage of
increasing J is a (slight) degradation of the general quality of the top K elements of the queue. In

practice, setting 3 = 1 seems to represent a good trade-off.

4.0. Saving Solution Values. The parent priority queue strategy described above saves
improvement values (23) (24) from previous iterations and recomputes them only if they are among
the K largest in the queue. A by-product of calculating the improvement associated with a potential
parent (23) (24) are the values of the parameters (v*, P*) yielding the minimum of (23). These
are the values that would be used to construct the daughter basis functions (11) if that parent
were chosen. The underlying assumption motivating the parent priority queue strategy is that the
approximation (3) does not dramatically change from one iteration to the next, especially during
the later iterations. Thus, one might suspect that the optimal parameters (v;, P;) associated with
each parent Be(z) (23) might not substantially change either. This would motivate saving (v}, Fy)
when improvements (23) (24) are computed. These values would be used to compute corresponding
improvements for By(x) at later iterations, provided that they are not too much later when the
approximation (3) has substantially changed. This can save considerable computation since (23)
would be computed for only one set of values (v*, P*) rather than for all possible (joint) values.

It turns out that there is nothing to be gained by saving optimal values of the parameters P*
(11) (12). The least-squares updating formulae (Friedman, 1991a,b) permit the computation of
optimal values (given £ and v (23)) nearly as fast as it takes to compute the lack-of-fit (23) for a
given (single) set of values. It can make sense however to save the optimal (input) variable number
v™ since evaluating (23) for a single value of v is p times faster than optimizing (calculating) it over
all values 1 < v £ p.

The basic idea is to associate two (additional) integers (mg,vy) with each (parent) B(z) in
the priority queue. The first, my, is the last iteration number at which the improvement (23) (24)
for By(x) was recomputed by optimizing over all values of 1 < v < p. The second, v; = v”, is the
corresponding optimizing input variable number. At the Ith iteration the top K basis functions in
the parent priority queue have their improvements recalculated following the strategy outlined in
Section 3.0 and 3.1. For each one, if

I—me>h (28)

then the corresponding improvement is calculated from (23) (24) by a complete optimization over

all input variables (1 < v < p), as well as all parameter (P) values. Then
my — [and vy — v~ (29)

where v” is the optimizing input variable. If (28) is false, then the corresponding calculation is

9

performed only over the values of P for input variable fixed at v = vy, and neither m; nor vy are
updated. This reduces the improvement computation (23) (24) by a factor of p (the number of input
variables). The quantity & in (28) characterizes the frequency at which input variable optimizations
are (re)performed. A value h = 1 will cause the optimal input variable to be recomputed (optimized)
every time an improvement (23) (24) is recalculated. A value h = 5 will cause this complete
optimization to be done for a parent basis function B¢(z) only if it has been more than five
iterations since it was last optimized for that basis function. Otherwise, the improvement (24) (24)
is evaluated only for v = v, (23), reducing computation by a factor of p.

When two new (daughter) basis functions Bz;_;(z) and B;j(z) are created (at the [th iter-
ation) may_y and ma; (28) are set to —oo so that va;_; and vy will be calculated by a complete
optimization (23) at the next ([4 1st) iteration. It is also prudent to set My = —co, where By (z)
was the selected parent at the [th iteration, since its incorporation into the approximation (with
its previously optimal v™) will likely cause its optimal input variable to change for future iterations.
Remember that these three basis functions (daughters and corresponding parent) are the first three
elements of the priority queue for the next (I + 1st) iteration. Thus three complete optimizations
(over the input variables 1 < v < p) are performed at each iteration. For each of the remaining top
K elements in the priority queue complete optimizations are performed with probability 1/h (28).
The expected computation is reduced thereby from being proportional to Kp, to being proportional
todp+ (K —3)(1 —1/h 4 p/h). This results in an (average) computational improvement ratio of

Clh,K)={3+ (K -3)[(1-1/h)/p+ 1/h]}/K. (30)

5.0. Analysis. The computational reduction resulting from the strategies outlined in the
preceding three sections is controlled by two parameters. They are K, the priority queue search
depth, and h (28), the (inverse) frequency with which the optimization over input variables (23) is
performed. Decreasing A and/or increasing h decreases computation. The trade-off for this benefit
is a potentially less thorough optimization of (15) that could result in a less accurate approximation
(3). The (possible) loss of accuracy issue is discussed in the next section. Here we derive formulae
for the expected (relative) speed-up as a function of K and h, given the other parameters of the
problem (N, p, and M = Mmnax (22)). These formulae can be used to predict running times
for longer more thorough runs, after MARS has been run in a fast mode (K small, h large) for
exploratory work. They also given an idea of the reduction in computation possible through these
speed-up strategies.

We first perform a more careful analysis of the computation required by MARS in its most
thorough mode (K = oo, A = 1). Through the use of the least-squares updating formulae (Fried-

man, 1991a,b) the computation required to minimize (15) with respect to (only) the parameters P

10

is proportional to
Cp=Nm (31)

where N is the training sample size and m = 2J = 1 is the number of parent basis functions at the
Ith iteration. This minimization is performed for all input variables z,,, 1 < v < p, and all parent
basis functions Be(x), 0 < £ < m — 1. Thus the time required for the [th iteration is proportional

to pNm?. The total time for I;,, iterations is then (proportional to)
Wy = pN[M(M + 1)(2M 4+ 1)]/6 (32)

where M = 200 — 1.

We now analyze the the running time required (as a function of K and h) for the strategies
presented in this paper (Sections 3.0-4.0). For the first (K + 2)/2 iterations there are less than
{or equal to) K parent basis functions in the queue, m < K, so that all current members are
examined. Also, we deliberately postpone invoking the input variable memory strategy (Section
4.0) for these same early iterations so that the first few (K] basis functions are constructed by a
thorough optimization. Thus for m = 2] — 2 < K the running time W) is the same as that for the
original strategy

W, = pN[K(K + 1)(2K + 1)]/6. (33)

When there are more than K parents in the queue, m > K, the expected computation is propor-
tional to MNK - C(h, K'), from (30) (31), at each iteration for which & < m < M. Thus, the

computation for this (m > K') part of the procedure is
Wo=NKC(h,K)M(M+1)- KK +1)]/2 (34)

Therefore, the total computation is reduced by a factor of R = (W; + W,)/Wy (32) (33) (34) which

becomes (after some algebra)
R=3[CM(M+ 1)+ (K + 1)(2K*/3 - (C - 1/3)K + 20))/[M(M + 1)(2M + 1)), (35a)
where
C=K-Clh,K)=3+(K-3)[1/h+(1-1/R)/p]. (35b)

One sees from (35) that for fixed queue search depth K, and M becoming increasingly large
(M >> K), that £ ~ 1/M. Therefore, with this strategy, computation increases (with increasing
total number of basis functions M) as M?, rather than M* for the original MARS strategy (22)
(32) [Friedman (1991a,b)]. Also, in this limit the computation increases linearly with K. From

11

(35b) one sees that the computational reduction associated with increasing f is most pronounced
for p and/or K large, and in any case reaches a diminishing return as & increases.

In the original MARS algorithm, the computation associated with the forward stepwise basis
function syvnthesis completely dominated the training time. The speed-up strategies discussed here
can greatly reduce this part of computation (33). This, however, enhances the relative importance
of other parts of the training procedure, that while insignificant before the speed-up, are unaffected
by it. The computational reduction ratio (35) pertains only to the forward stepwise part of the
procedure so that it gives an overly optimistic estimate of the speed-up of the entire procedure,

especially when K (35) is very small. This is examined in the next section.

6.0. Simulation Studies. The strategies described herein for decreasing MARS training
times are not purely algorithmic. That is, they do not perform the equivalent computation in less
time, but rather they alter the computation (possibly) trading a (hopefully) small degree of accuracy
(on the training data) for a big gain in speed. Training with different values of queue search depth
K and input variable (inverse) updating frequency h, gives rise to different approximations (3). In
order to choose appropriate values for these two parameters, it is important to know not only how
they affect training time, but also how approximation accuracy is affected. These questions are
examined in the context of two artificial examples. The result appears to be that while changing
the values of K and h can have a dramatic effect on training computation times, approximation
accuracy is largely unaffected over a wide range of their values.

6.1. Gaussian Wave Form Example. The input variables {z;}] for this example are the

relative amplitudes of a Gaussian function evaluated at p = 20 points on the real line
z; = e~W/M=wPle® < i<, (36a)

Each observation (exemplar) is characterized by a mean u and standard deviation . These were

generated to have a uniform distribution on

0<p<20
(36b0)
0.1 <e < 10.1.

The response (output) was taken to be the standard deviation ¢ (36). That is, the algorithm
attempts to learn to calculate the standard deviation of a waveform (36a) given a sample of wave-
forms of different (unknown) means and (known) standard deviations (36b). A sample of N = 400
waveforms was used for training and the (maximum) number of basis functions was set to M = 100.
Table 1 shows results (rows) for various parameter (K,h) values (first two columns). The

third column gives the corresponding accuracy (average squared-error) on the training sample. The

12

fourth column gives the corresponding generalization accuracy obtained by computing the average
squared-error over 5000 additional observations (36) that in no way participated in training. The
fifth column gives the predicted computation reduction ratio (35) computed from the corresponding
parameter values, whereas the last column gives the actual ratio of training execution times. The

first line in Table 1 (“Time (00,1)") gives the actual execution time for the first row (no speed-up)
on a DecStation 5000/240.

Table 1

Gaussian waveform example with N = 400 training observations

and M = 100 basis functions

Time (oo,1) = 1975.0 sec.

(error)® x 107 relative computation

K h train gen estimated actual
o0 1 .755 14.4 1 1
20 1 522 4.17 30 B3
20 5 649 4.25 A1 14
10 3 690 4.62 070 10
10 10 814 3.08 .06 08

5 1.08 5.46 05 07

10 1.41 6.42 05 .06

The last column of Table 1 indicates that fairly dramatic computational gains are possible
through the strategies outlined in Sections 3.0-4.0. Column 5 shows that the estimated gain from
(35) is (in this example) only slightly optimistic. The second and third columns show that the
price (in accuracy) paid for these computational gains is (at most) minimal. In fact, the first row
(no speed-up) gave (by far) the worst accuracy on both the training and generalization sample for
some (as vet not understood) reason. With this (anamolous) exception, accuracy on the training
sample degrades with increasing speed factor (K smaller, h larger) but not by very much. The
effect on generalization error is seen to be even less.

6.2. A Robot Arm Example. In this example data are taken from a hypothetical robot
arm free to move in three dimensions (r,y,z). Figure 1 shows a schematic diagram of the arm.
It has two joints (J1, J2). The first J1 is fixed in location (at the origin) but has two rotational
degrees-of-freedom; it can rotate the upper arm (a;) in the £ — y plane around the origin (6;) ,
and it can twist the upper arm (a;) perpendicular to the direction a; is pointing (¢). The upper

arm (a;) is constrained to lie in the £ — y plane. The second (hinge) joint J2 can only rotate the

13

forearm (a;) around the location of J2 in the plane defined by the upper and forearms (#;). The
lengths of both the upper and forearms are adjustable. The (p = 5) input variables were taken to
be the lengths of the upper and forearm (¢, {;) respectively, and the three angles (8,6, ¢). The
response (output) was the distance from the origin (J1) to the end of the forearm (z,y, z) opposite

to the joint (J2), the location of which is given by

z=1£{cosy — £3co8(f; +02)cosg
y=£;sinfy — {;sin(8; + 0;) cos ¢

z = {5 sin #, sin ¢.

The (output) distance is then
d = (z* + 3* + £%)1/2,

Training data was generated uniformly over the complete range of angles 6, € [0, 2x], 8; € [0,2n],
¢ € [-m/2,7/2], and arm lengths in the range £; € [0,1] and &, € [0,1]. Two examples were
run. The first was with N = 400 training samples and M = 100 basis functions. The results
are shown in Table 2 (in the same format as Table 1). The second example had N = 800 training
samples and M = 200 basis functions allowed. Both examples illustrate the dramatic computational
gains possible by applying the speed-up strategies, with little (if any) apparent accuracy loss. The
estimated computation reduction factor (35) is more optimistically biased here than in the first
example (Table 1), but its relative values (among the smallest) give a reasonable reflection of
(proportional) changes in computation for different parameter (K, k) values. Thus, after running
in a high speed mode (K small, h large) one can obtain a fairly reliable estimate for the increase
in computation required for running in slower modes for more thorough optimization. Although
for examples presented here there appears to be little gain in accuracy by slower running, one may

wish to verify this in any given situation.

14

Table 2

Robot arm example with N = 400 training observations

and M = 100 basis functions

Time (o0, 1) = 235.7 sec

(error)? x 103 relative computation
K h train gen estimated actual
oo 1 720 6.07 1 1
20 1 919 4.64 .30 39
20 3 974 6.08 14 .20
20 10 752 3.33 12 .20
10 5 63 5.33 08 15
10 10 868 5.04 08 13
3 3 D98 7.44 06 11
Table 3

Robot arm example with N = 800 training observations

and M = 200 basis functions

Time (o0,1) = 3231.9 sec

(error)? x 1073 relative computation

K h train gen estimated actual
(s3] 1 .242 1.04 1 1
20 1 223 1.03 15 .23
20 5 198 1.49 07 14
20 10 327 1.27 06 |
10 3 el l 813 .04 A1
10 10 231 1.14 .04 .08
5 5 416 1.23 .03 06

Comparing Tables 2 and 3 one sees that he computation reduction ratio for M = 200 is roughly
half that for M = 100, as is predicted by (35). As M is increased the corresponding computational
gain with these speed-up strategies will also increase (roughly linearly) reflecting the fact that
computation grows as M? (rather than M?® with no speed-up).

All three tables reflect the diminishing computational return associated with increasing h,

15

especially for A small, as predicted by (33). There seems to be little gain in increasing A& beyond
the value h = 5.

The error (squared) values displayed in the three tables do not exhibit a smooth increasing
dependence with decreasing computation as might be expected by the fact that reduced compu-
tation implies a (possibly) less thorough optimization on the training sample. This is no surprise
for generalization error since it is well known that closer fitting to the training data need not im-
ply better generalization. However, this tendency is also exhibited (to a somewhat lesser degree)
with the training error values. Upon reflection, this behavior is not unexpected. Changing the
optimization procedure changes (usually slightly) the particular basis functions that are entered,
at each iteration. Due to the forward stepwise (greedy) nature of the algorithm, basis functions
constructed in later iterations depend on those synthesized earlier. It can happen that a (slightly)
suboptimal basis function entered earlier can combine with a later one to produce a better result
than if the optimal one had been entered earlier. This effect helps compensate for the (apparently
very slight) degradation caused by the suboptimality, sometimes (as indicated by the Tables) com-
pletely overcoming it. This is more likely in situations characterized by very small approximation
errors such as those considered here. It is clear from the Tables that there is very little (if any)
accuracy degradation with the speed-up strategies.

It should be noted that these speed-up strategies can give rise to significant increases in ac-
curacy when training computation rather than sample size is the critical resource. For the case of
N = 800, M = 200 (Table 3) the resulting approximation error-squared is about five times less
than for N = 400, M = 100 (Table 2). With the original MARS algorithm it would take about 14
times longer to run the larger problem. in order to gain this increase in accuracy. With the advent
of the computation reduction strategies outlined in Sections 3.0—4.0, Table 3 (last row) shows that

the larger problem can now be run in less time than the smaller one could have been run before.

7.0. Discussion. The central idea underlying the strategies of Sections 3.0-4.0 is to install
a memory into the MARS algorithm so that results from earlier iterations can help guide the
optimization for later ones. The results of the simulated examples in Section 6 (Tables 1-3) indicate
success, in that computation can be dramatically reduced with little or no apparent decrease in
approximation accuracy. These examples represent purely approximational problems in that no
error was added to the output. A set of input variable values completely specified the response
output value. With ountput error there would be even less (relative) accuracy decrease since the
irreducible error cannot be modeled (by definition) through any method.

Rogers (1991, 1992) proposed a quite different strategy for attempting to decrease computation

for MARS (-like) approximations. He replaces the forward stepwise approach to basis function

16

synthesis by a genetic optimization algorithm (Holland, 1975). No relative computation times are
given, but for one problem a reduction by about a factor of ten in the number of (linear) least-squares
fits is reported for the genetic approach as compared to the original MARS algorithm. However
(as noted by Rogers) full least-squares fits are needed with the genetic approach, each requiring
computation proportional to NM? (16). With MARS the least-squares updating formulae enable
this to be reduced to be proportional to M (21). For the example cited by Rogers (1992) (N = 200,
M =~ 20), the computation for each MARS least-squares fit is thereby reduced on the order of a
factor of 10°. Thus, it would appear (from the information reported) that the original MARS
algorithm (Friedman, 1991a,b), even without the speed increases developed here, is (considerably)
faster than the genetic approach.

References.

Friedman, J. H. (1991a). Multivariate adaptive regression splines (with discussion). Annals of
Statistics, 19, 1-141.

Friedman, J. H. (1991b). Estimating functions of mixed ordinal and categorical variables using
adaptive splines. Department of Statistics, Stanford University, Technical Report LCS 108.
Friedman, J. H. (1991c). Adaptive spline networks. In Advances in Neural Information Processing

Systems, 3, Morgan Kaufmann, San Mateo, CA.

Holland, J. (1975). Adaptation in Artificial and Neural Systems. University of Michigan Press,
Ann Arbor, MI.

Rogers, D. (1991). G/SPLINES: A hybrid of Friedman’s multivariate adaptive splines (MARS) al-
gorithm and Holland’s genetic algorithm. In Proceedings of the Fourth International Conference
on Genetic Algorithms, San Diego, CA.

Rogers, D. (1992). Data analysis using G/SPLINES. In Advances in Neural Information Processing
Systems, 4, 1088-1095, Morgan Kaufmann, San Mateo, CA.

Figure Caption:

Figure 1. Schematic diagram of the robot arm used in Section 6.2.

17

FIGURE 1

